Navigation List

Blank Family Tree Template 1 Generations

Giacomini, K. M. & Sugiyama, Y. in Goodman & Gilman’s The Pharmacological Base of Therapeutics (eds Brunton, L. L., Lazo, J. S. & Parker, R. L.) 41–70 (McGraw-Hill, New York, 2006). This affiliate in a arbiter provides an accomplished overview of transporters.

1 Best Generation Family Tree Template Printable - printablee.com In Blank Family Tree Template 3 Generations

Google Scholar 

Schinkel, A. H. & Jonker, J. W. Mammalian biologic address transporters of the ATP bounden cassette (ABC) family: an overview. Adv. Biologic Deliv. Rev. 55, 3–29 (2003). This arrangement provides an accomplished assay of ABC transporters that are important in biologic response.

CAS  PubMed  Google Scholar 

Sai, Y. Biochemical and atomic pharmacological aspects of transporters as determinants of biologic disposition. Biologic Metab. Pharmacokinet. 20, 91–99 (2005).

CAS  PubMed  Google Scholar 

Cascorbi, I. Role of pharmacogenetics of ATP-binding cassette transporters in the pharmacokinetics of drugs. Pharmacol. Ther. 112, 457–473 (2006).

CAS  PubMed  Google Scholar 

Choudhuri, S. & Klaassen, C. D. Structure, function, expression, genomic organization, and distinct nucleotide polymorphisms of animal ABCB1 (MDR1), ABCC (MRP), and ABCG2 (BCRP) address transporters. Int. J. Toxicol. 25, 231–259 (2006).

CAS  PubMed  Google Scholar 

Hediger, M. A. et al. The ABCs of solute carriers: physiological, dissection and ameliorative implications of animal film carriage proteins. Pflugers Arch. 447, 465–468 (2004).

CAS  PubMed  Google Scholar 

Koepsell, H., Lips, K. & Volk, C. Polyspecific amoebic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm. Res. 24, 1227–1251 (2007). This arrangement provides an accomplished assay of assorted transporters for amoebic cations (OCTs, OCTNs and MATEs).

CAS  PubMed  Google Scholar 

Jonker, J. W., Wagenaar, E., Van Eijl, S. & Schinkel, A. H. Absence in the amoebic cation transporters 1 and 2 (Oct1/Oct2 [Slc22a1/Slc22a2]) in mice abolishes renal beard of amoebic cations. Mol. Corpuscle Biol. 23, 7902–7908 (2003).

CAS  PubMed  PubMed Central  Google Scholar 

Schinkel, A. H. et al. Multidrug attrition and the role of P-glycoprotein knockout mice. Eur. J. Blight 31A, 1295–1298 (1995).

CAS  PubMed  Google Scholar 

Maeda, K. & Sugiyama, Y. Appulse of abiogenetic polymorphisms of transporters on the pharmacokinetic, pharmacodynamic and toxicological backdrop of anionic drugs. Biologic Metab. Pharmacokinet. 23, 223–235 (2008).

CAS  PubMed  Google Scholar 

Sissung, T. M., Gardner, E. R., Gao, R. & Figg, W. D. Pharmacogenetics of film transporters: a assay of accepted approaches. Methods Mol. Biol. 448, 41–62 (2008).

CAS  PubMed  Google Scholar 

Huang, S. M., Temple, R., Throckmorton, D. C. & Lesko, L. J. Biologic alternation studies: abstraction design, abstracts analysis, and implications for dosing and labeling. Clin. Pharmacol. Ther. 81, 298–304 (2007).

CAS  PubMed  Google Scholar 

Huang, S. M. et al. New era in biologic alternation evaluation: US Food and Biologic Administration amend on CYP enzymes, transporters, and the advice process. J. Clin. Pharmacol. 48, 662–670 (2008).

CAS  PubMed  Google Scholar 

US Department of Bloom and Animal Services, Food and Biologic Administration, Center for Biologic Appraisal and Research (CDER), Center for Biologics Appraisal and Research (CBER). Advice for Industry. Biologic Alternation Studies — Abstraction Design, Abstracts Analysis, and Implications for Dosing and Labeling. US FDA website [online], (2006). This website provides accepted FDA guidances for DDI studies. For adapted guidances see the websites in Further information.

Zhang, L., Zhang, Y. D., Strong, J. M., Reynolds, K. S. & Huang, S. M. A authoritative angle on transporter-based biologic interactions. Xenobiotica 38, 709–724 (2008). This commodity provides an FDA angle about the role of transporters in DDIs.

CAS  PubMed  Google Scholar 

Zhang, L., Strong, J. M., Qiu, W., Lesko, L. J. & Huang, S. M. Scientific perspectives on biologic transporters and their role in biologic interactionst. Mol. Pharm. 3, 62–69 (2006).

CAS  PubMed  Google Scholar 

Raub, T. J. P-glycoprotein acceptance of substrates and abstention through rational biologic design. Mol. Pharm. 3, 3–25 (2006).

CAS  PubMed  Google Scholar 

Miller, D. S., Bauer, B. & Hartz, A. M. Modulation of P-glycoprotein at the blood–brain barrier: opportunities to advance axial afraid arrangement pharmacotherapy. Pharmacol. Rev. 60, 196–209 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Kimura, Y., Morita, S. Y., Matsuo, M. & Ueda, K. Apparatus of multidrug acceptance by MDR1/ABCB1. Blight Sci. 98, 1303–1310 (2007).

CAS  PubMed  Google Scholar 

Chinn, L. W. & Kroetz, D. L. ABCB1 pharmacogenetics: progress, pitfalls, and promise. Clin. Pharmacol. Ther. 81, 265–269 (2007).

CAS  PubMed  Google Scholar 

Zhou, S. F. Structure, action and adjustment of P-glycoprotein and its analytic appliance in biologic disposition. Xenobiotica 38, 802–832 (2008).

CAS  PubMed  Google Scholar 

Aller, S. G. et al. Anatomy of P-glycoprotein reveals a atomic base for poly-specific biologic binding. Science 323, 1718–1722 (2009). This arrangement describes the aboriginal atomic anatomy of abrasion P-gp.

CAS  PubMed  PubMed Central  Google Scholar 

Zhou, Y., Gottesman, M. M. & Pastan, I. Studies of animal MDR1–MDR2 chimeras authenticate the anatomic adequation of a above transmembrane articulation of the multidrug agent and phosphatidylcholine flippase. Mol. Corpuscle Biol. 19, 1450–1459 (1999).

CAS  PubMed  PubMed Central  Google Scholar 

Carrier, I., Julien, M. & Gros, P. Assay of catalytic carboxylate mutants E552Q and E1197Q suggests agee ATP hydrolysis by the two nucleotide-binding domains of P-glycoprotein. Biochemistry 42, 12875–12885 (2003).

CAS  PubMed  Google Scholar 

Loo, T. W., Bartlett, M. C. & Clarke, D. M. Val133 and Cys137 in transmembrane articulation 2 are abutting to Arg935 and Gly939 in transmembrane articulation 11 of animal P-glycoprotein. J. Biol. Chem. 279, 18232–18238 (2004).

CAS  PubMed  Google Scholar 

Feng, B. et al. In vitro P-glycoprotein assays to adumbrate the in vivo interactions of P-glycoprotein with drugs in the axial afraid system. Biologic Metab. Dispos. 36, 268–275 (2008).

CAS  PubMed  Google Scholar 

Yamazaki, M. et al. In vitro substrate identification studies for P-glycoprotein-mediated transport: breed aberration and adequation of in vivo results. J. Pharmacol. Exp. Ther. 296, 723–735 (2001).

CAS  PubMed  Google Scholar 

Sasongko, L. et al. Imaging P-glycoprotein carriage action at the animal blood–brain barrier with positron discharge tomography. Clin. Pharmacol. Ther. 77, 503–514 (2005).

CAS  PubMed  Google Scholar 

Kurnik, D. et al. Tariquidar, a careful P-glycoprotein inhibitor, does not potentiate loperamide’s opioid academician furnishings in bodies admitting abounding inhibition of lymphocyte P-glycoprotein. Anesthesiology 109, 1092–1099 (2008).

CAS  PubMed  Google Scholar 

Sadeque, A. J., Wandel, C., He, H., Shah, S. & Wood, A. J. Added biologic commitment to the academician by P-glycoprotein inhibition. Clin. Pharmacol. Ther. 68, 231–237 (2000).

CAS  PubMed  Google Scholar 

Eyal, S., Hsiao, P. & Unadkat, J. D. Biologic interactions at the blood–brain barrier: actuality or fantasy? Pharmacol. Ther. 123, 80–104 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Williams, J. A. et al. PhRMA white cardboard on ADME pharmacogenomics. J. Clin. Pharmacol. 48, 849–889 (2008).

CAS  PubMed  Google Scholar 

Wakabayashi, K., Tamura, A., Saito, H., Onishi, Y. & Ishikawa, T. Animal ABC agent ABCG2 in xenobiotic aegis and redox biology. Biologic Metab. Rev. 38, 371–391 (2006).

CAS  PubMed  Google Scholar 

Robey, R. W. et al. ABCG2: a perspective. Adv. Biologic Deliv. Rev. 61, 3–13 (2009).

CAS  PubMed  Google Scholar 

Doyle, L. A. et al. A multidrug attrition agent from animal MCF-7 breast blight cells. Proc. Natl Acad. Sci. USA 95, 15665–15670 (1998).

CAS  PubMed  Google Scholar 

van Herwaarden, A. E. & Schinkel, A. H. The action of breast blight attrition protein in epithelial barriers, axis beef and milk beard of drugs and xenotoxins. Trends Pharmacol. Sci. 27, 10–16 (2006).

CAS  PubMed  Google Scholar 

Vlaming, M. L., Lagas, J. S. & Schinkel, A. H. Physiological and pharmacological roles of ABCG2 (BCRP): contempo allegation in Abcg2 knockout mice. Adv. Biologic Deliv. Rev. 61, 14–25 (2009).

CAS  PubMed  Google Scholar 

Matsson, P. et al. A all-around biologic inhibition arrangement for the animal ATP-binding cassette agent breast blight attrition protein (ABCG2). J. Pharmacol. Exp. Ther. 323, 19–30 (2007).

CAS  PubMed  Google Scholar 

Nicolle, E. et al. QSAR assay and atomic clay of ABCG2-specific inhibitors. Adv. Biologic Deliv. Rev. 61, 34–46 (2009).

CAS  PubMed  Google Scholar 

Saito, H. et al. A new action of accelerated screening and quantitative structure–activity accord assay to appraise animal ATP-binding cassette agent ABCG2-drug interactions. J. Pharmacol. Exp. Ther. 317, 1114–1124 (2006).

CAS  PubMed  Google Scholar 

Hirano, M. et al. Captivation of BCRP (ABCG2) in the biliary abolishment of pitavastatin. Mol. Pharmacol. 68, 800–807 (2005).

CAS  PubMed  Google Scholar 

Enokizono, J., Kusuhara, H. & Sugiyama, Y. Aftereffect of breast blight attrition protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol. Pharmacol. 72, 967–975 (2007).

CAS  PubMed  Google Scholar 

Hegedus, C. et al. Ins and outs of the ABCG2 multidrug transporter: an amend on in vitro anatomic assays. Adv. Biologic Deliv. Rev. 61, 47–56 (2009).

CAS  PubMed  Google Scholar 

de Vries, N. A. et al. P-glycoprotein and breast blight attrition protein: two ascendant transporters alive calm in attached the academician assimilation of topotecan. Clin. Blight Res. 13, 6440–6449 (2007).

CAS  PubMed  Google Scholar 

Zaher, H. et al. Breast blight attrition protein (Bcrp/abcg2) is a above account of sulfasalazine assimilation and abolishment in the mouse. Mol. Pharm. 3, 55–61 (2006).

CAS  PubMed  Google Scholar 

Merino, G., Jonker, J. W., Wagenaar, E., van Herwaarden, A. E. & Schinkel, A. H. The breast blight attrition protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk beard of the antibacterial nitrofurantoin. Mol. Pharmacol. 67, 1758–1764 (2005).

CAS  PubMed  Google Scholar 

Merino, G. et al. Breast blight attrition protein (BCRP/ABCG2) transports fluoroquinolone antibiotics and affects their articulate availability, pharmacokinetics, and milk secretion. Biologic Metab. Dispos. 34, 690–695 (2006).

CAS  PubMed  Google Scholar 

Oostendorp, R. L., Buckle, T., Beijnen, J. H., van Tellingen, O. & Schellens, J. H. The aftereffect of P-gp (Mdr1a/1b), BCRP (Bcrp1) and P-gp/BCRP inhibitors on the in vivo absorption, distribution, metabolism and abolishment of imatinib. Invest. New Drugs 27, 31–40 (2009).

CAS  PubMed  Google Scholar 

Yamasaki, Y. et al. Pharmacogenetic assuming of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans. Clin. Pharmacol. Ther. 84, 95–103 (2008).

CAS  PubMed  Google Scholar 

Cusatis, G. & Sparreboom, A. Pharmacogenomic accent of ABCG2. Pharmacogenomics 9, 1005–1009 (2008).

CAS  PubMed  Google Scholar 

Cusatis, G. et al. Pharmacogenetics of ABCG2 and adverse reactions to gefitinib. J. Natl Blight Inst. 98, 1739–1742 (2006).

CAS  PubMed  Google Scholar 

Polgar, O., Robey, R. W. & Bates, S. E. ABCG2: structure, action and role in biologic response. Expert Opin. Biologic Metab. Toxicol. 4, 1–15 (2008).

CAS  PubMed  Google Scholar 

Keskitalo, J. E. et al. ABCG2 polymorphism clearly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 86, 197–203 (2009).

CAS  PubMed  Google Scholar 

Zhang, W. et al. Role of BCRP 421C>A polymorphism on rosuvastatin pharmacokinetics in advantageous Chinese males. Clin. Chim. Acta 373, 99–103 (2006).

CAS  PubMed  Google Scholar 

Morisaki, K. et al. Distinct nucleotide polymorphisms adapt the agent action of ABCG2. Blight Chemother. Pharmacol. 56, 161–172 (2005).

CAS  PubMed  Google Scholar 

Aoki, M. et al. Kidney-specific announcement of animal amoebic cation agent 2 (OCT2/SLC22A2) is adapted by DNA methylation. Am. J. Physiol. Renal Physiol. 295, F165–F170 (2008).

CAS  PubMed  Google Scholar 

Koepsell, H. & Endou, H. The SLC22 biologic agent family. Pflugers Arch. 447, 666–676 (2004).

CAS  PubMed  Google Scholar 

Wright, S. H. Role of amoebic cation transporters in the renal administration of ameliorative agents and xenobiotics. Toxicol. Appl. Pharmacol. 204, 309–319 (2005).

CAS  PubMed  Google Scholar 

Urban, T. J. & Giacomini, K. M. in Biologic Transporters (eds You, G. & Morris, M. E.) 11–33 (John Wiley & Sons, New York, 2007).

Google Scholar 

Ciarimboli, G. Amoebic cation transporters. Xenobiotica 38, 936–971 (2008).

CAS  PubMed  Google Scholar 

Nigam, S. K., Bush, K. T. & Bhatnagar, V. Biologic and adulteration administration by the OAT amoebic anion transporters in the branch and added tissues. Nature Clin. Pract. Nephrol. 3, 443–448 (2007). This arrangement provides an accomplished assay of OATs.

CAS  Google Scholar 

Rizwan, A. N. & Burckhardt, G. Amoebic anion transporters of the SLC22 family: biopharmaceutical, physiological, and dissection roles. Pharm. Res. 24, 450–470 (2007).

CAS  PubMed  Google Scholar 

Srimaroeng, C., Perry, J. L. & Pritchard, J. B. Physiology, structure, and adjustment of the cloned amoebic anion transporters. Xenobiotica 38, 889–935 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Ahlin, G. et al. Structural requirements for biologic inhibition of the alarmist specific animal amoebic cation carriage protein 1. J. Med. Chem. 51, 5932–5942 (2008).

CAS  PubMed  Google Scholar 

Okura, T., Ito, R., Ishiguro, N., Tamai, I. & Deguchi, Y. Blood–brain barrier carriage of pramipexole, a dopamine D2 agonist. Life Sci. 80, 1564–1571 (2007).

CAS  PubMed  Google Scholar 

Glube, N. & Langguth, P. Caki-1 beef as a archetypal arrangement for the alternation of renally buried drugs with OCT3. Nephron Physiol. 108, 18–28 (2008).

Google Scholar 

Glube, N., Giessl, A., Wolfrum, U. & Langguth, P. Caki-1 beef represent an in vitro archetypal arrangement for belief the animal adjacent tubule epithelium. Nephron Exp. Nephrol. 107, e47–e56 (2007).

CAS  PubMed  Google Scholar 

Muller, J. et al. Biologic specificity and abdominal film localization of animal amoebic cation transporters (OCT). Biochem. Pharmacol. 70, 1851–1860 (2005).

PubMed  Google Scholar 

Rytting, E., Bryan, J., Southard, M. & Audus, K. L. Low-affinity uptake of the beaming amoebic cation 4-(4-(dimethylamino)styryl)-N-methylpyridinium iodide (4-Di-1-ASP) in BeWo cells. Biochem. Pharmacol. 73, 891–900 (2007).

CAS  PubMed  Google Scholar 

Kaler, G. et al. Structural aberration governs substrate specificity for amoebic anion agent (OAT) homologs. Abeyant alien assay by OAT ancestors members. J. Biol. Chem. 282, 23841–23853 (2007).

CAS  PubMed  Google Scholar 

Truong, D. M., Kaler, G., Khandelwal, A., Swaan, P. W. & Nigam, S. K. Multi-level assay of amoebic anion transporters 1, 3, and 6 reveals above differences in structural determinants of antiviral discrimination. J. Biol. Chem. 283, 8654–8663 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Jonker, J. W. et al. Bargain hepatic uptake and abdominal abolishment of amoebic cations in mice with a targeted disruption of the amoebic cation agent 1 (Oct1 [Slc22a1]) gene. Mol. Corpuscle Biol. 21, 5471–5477 (2001).

CAS  PubMed  PubMed Central  Google Scholar 

Shu, Y. et al. Aftereffect of abiogenetic aberration in the amoebic cation agent 1 (OCT1) on metformin action. J. Clin. Invest. 117, 1422–1431 (2007).

CAS  PubMed  PubMed Central  Google Scholar 

Wang, D. S. et al. Captivation of amoebic cation agent 1 in hepatic and abdominal administration of metformin. J. Pharmacol. Exp. Ther. 302, 510–515 (2002).

CAS  PubMed  Google Scholar 

Eraly, S. A. et al. Decreased renal amoebic anion beard and claret accession of autogenous amoebic anions in OAT1 knock-out mice. J. Biol. Chem. 281, 5072–5083 (2006).

CAS  PubMed  Google Scholar 

Vallon, V. et al. Overlapping in vitro and in vivo specificities of the amoebic anion transporters OAT1 and OAT3 for bend and thiazide diuretics. Am. J. Physiol. Renal Physiol. 294, F867–F873 (2008).

CAS  PubMed  Google Scholar 

Shu, Y. et al. Aftereffect of abiogenetic aberration in the amoebic cation agent 1, OCT1, on metformin pharmacokinetics. Clin. Pharmacol. Ther. 83, 273–280 (2008).

CAS  PubMed  Google Scholar 

Zhou, K. et al. Reduced-function SLC22A1 polymorphisms encoding amoebic cation agent 1 and glycemic acknowledgment to metformin: a GoDARTS study. Diabetes 58, 1434–1439 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

White, D. L. et al. OCT-1-mediated arrival is a key account of the intracellular uptake of imatinib but not nilotinib (AMN107): bargain OCT-1 action is the account of low in vitro acuteness to imatinib. Claret 108, 697–704 (2006).

CAS  PubMed  Google Scholar 

White, D. L. et al. Most CML patients who accept a suboptimal acknowledgment to imatinib accept low OCT-1 activity: college doses of imatinib may affected the abrogating appulse of low OCT-1 activity. Claret 110, 4064–4072 (2007).

CAS  PubMed  Google Scholar 

Wang, Z. J., Yin, O. Q., Tomlinson, B. & Chow, M. S. OCT2 polymorphisms and in-vivo renal anatomic consequence: studies with metformin and cimetidine. Pharmacogenet. Genomics 18, 637–645 (2008).

CAS  PubMed  Google Scholar 

Song, I. S. et al. Abiogenetic variants of the amoebic cation agent 2 access the disposition of metformin. Clin. Pharmacol. Ther. 84, 559–562 (2008).

CAS  PubMed  Google Scholar 

Chen, Y. et al. Aftereffect of abiogenetic aberration in the amoebic cation agent 2 on the renal abolishment of metformin. Pharmacogenet. Genomics 19, 497–504 (2009).

PubMed  PubMed Central  Google Scholar 

Tirona, R. G. & Kim, R. B. in Biologic Transporters (eds You, G. & Morris, M. E.) 75–104 (John Wiley & Sons, New York, 2007).

Google Scholar 

Hagenbuch, B. & Gui, C. Xenobiotic transporters of the animal amoebic anion alteration polypeptides (OATP) family. Xenobiotica 38, 778–801 (2008). This arrangement provides an accomplished assay of OATPs.

CAS  PubMed  Google Scholar 

Leuthold, S. et al. Mechanisms of pH-gradient apprenticed carriage advised by amoebic anion polypeptide transporters. Am. J. Physiol. Corpuscle Physiol. 296, C570–C582 (2009).

CAS  PubMed  Google Scholar 

Hagenbuch, B. & Meier, P. J. The superfamily of amoebic anion alteration polypeptides. Biochim. Biophys. Acta 1609, 1–18 (2003).

CAS  PubMed  Google Scholar 

Tirona, R. G., Leake, B. F., Merino, G. & Kim, R. B. Polymorphisms in OATP-C: identification of assorted allelic variants associated with adapted carriage action amid European- and African-Americans. J. Biol. Chem. 276, 35669–35675 (2001).

CAS  PubMed  Google Scholar 

Hsiang, B. et al. A atypical animal hepatic amoebic anion alteration polypeptide (OATP2). Identification of a liver-specific animal amoebic anion alteration polypeptide and identification of rat and animal hydroxymethylglutaryl-CoA reductase inhibitor transporters. J. Biol. Chem. 274, 37161–37168 (1999).

CAS  PubMed  Google Scholar 

Konig, J., Cui, Y., Nies, A. T. & Keppler, D. A atypical animal amoebic anion alteration polypeptide localized to the basolateral hepatocyte membrane. Am. J. Physiol. Gastrointest. Alarmist Physiol. 278, G156–G164 (2000).

CAS  PubMed  Google Scholar 

Abe, T. et al. Identification of a atypical gene ancestors encoding animal liver-specific amoebic anion agent LST-1. J. Biol. Chem. 274, 17159–17163 (1999).

CAS  PubMed  Google Scholar 

Kullak-Ublick, G. A. et al. Amoebic anion-transporting polypeptide B (OATP-B) and its anatomic allegory with three added OATPs of animal liver. Gastroenterology 120, 525–533 (2001).

CAS  PubMed  Google Scholar 

Gui, C. & Hagenbuch, B. Amino acerbic residues in transmembrane area 10 of amoebic anion alteration polypeptide 1B3 are analytical for cholecystokinin octapeptide transport. Biochemistry 47, 9090–9097 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Ismair, M. G. et al. Hepatic uptake of cholecystokinin octapeptide by amoebic anion-transporting polypeptides OATP4 and OATP8 of rat and animal liver. Gastroenterology 121, 1185–1190 (2001).

CAS  PubMed  Google Scholar 

Shitara, Y., Sato, H. & Sugiyama, Y. Appraisal of drug–drug alternation in the hepatobiliary and renal carriage of drugs. Annu. Rev. Pharmacol. Toxicol. 45, 689–723 (2005).

CAS  PubMed  Google Scholar 

Letschert, K., Komatsu, M., Hummel-Eisenbeiss, J. & Keppler, D. Vectorial carriage of the peptide CCK-8 by double-transfected MDCKII beef durably cogent the amoebic anion agent OATP1B3 (OATP8) and the consign pump ABCC2. J. Pharmacol. Exp. Ther. 313, 549–556 (2005).

CAS  PubMed  Google Scholar 

Matsushima, S. et al. Identification of the hepatic address transporters of amoebic anions appliance double-transfected Madin-Darby basset branch II beef cogent animal amoebic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug attrition 1, and OATP1B1/breast blight attrition protein. J. Pharmacol. Exp. Ther. 314, 1059–1067 (2005).

CAS  PubMed  Google Scholar 

Ishiguro, N. et al. Predominant addition of OATP1B3 to the hepatic uptake of telmisartan, an angiotensin II receptor antagonist, in humans. Biologic Metab. Dispos. 34, 1109–1115 (2006).

CAS  PubMed  Google Scholar 

Noe, J., Portmann, R., Brun, M. E. & Funk, C. Substrate-dependent drug–drug interactions amid gemfibrozil, fluvastatin and added amoebic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Biologic Metab. Dispos. 35, 1308–1314 (2007).

CAS  PubMed  Google Scholar 

Zaher, H. et al. Targeted disruption of murine amoebic anion-transporting polypeptide 1b2 (Oatp1b2/Slco1b2) decidedly alters disposition of prototypal biologic substrates pravastatin and rifampin. Mol. Pharmacol. 74, 320–329 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Lu, H. et al. Assuming of amoebic anion alteration polypeptide 1b2-null mice: capital role in hepatic uptake/toxicity of phalloidin and microcystin-LR. Toxicol. Sci. 103, 35–45 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Neuvonen, P. J., Niemi, M. & Backman, J. T. Biologic interactions with lipid-lowering drugs: mechanisms and analytic relevance. Clin. Pharmacol. Ther. 80, 565–581 (2006).

CAS  PubMed  Google Scholar 

Shitara, Y., Itoh, T., Sato, H., Li, A. P. & Sugiyama, Y. Inhibition of transporter-mediated hepatic uptake as a apparatus for drug–drug alternation amid cerivastatin and cyclosporin A. J. Pharmacol. Exp. Ther. 304, 610–616 (2003).

CAS  PubMed  Google Scholar 

Pasanen, M. K., Neuvonen, P. J. & Niemi, M. All-around assay of abiogenetic aberration in SLCO1B1. Pharmacogenomics 9, 19–33 (2008).

CAS  PubMed  Google Scholar 

Mwinyi, J., Johne, A., Bauer, S., Roots, I. & Gerloff, T. Evidence for changed furnishings of OATP-C (SLC21A6) 5 and 1b haplotypes on pravastatin kinetics. Clin. Pharmacol. Ther. 75, 415–421 (2004).

CAS  PubMed  Google Scholar 

Nishizato, Y. et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: after-effects for pravastatin pharmacokinetics. Clin. Pharmacol. Ther. 73, 554–565 (2003).

CAS  PubMed  Google Scholar 

Chung, J. Y. et al. Aftereffect of OATP1B1 (SLCO1B1) alternative alleles on the pharmacokinetics of pitavastatin in advantageous volunteers. Clin. Pharmacol. Ther. 78, 342–350 (2005).

CAS  PubMed  Google Scholar 

Pasanen, M. K., Neuvonen, M., Neuvonen, P. J. & Niemi, M. SLCO1B1 polymorphism clearly affects the pharmacokinetics of simvastatin acid. Pharmacogenet. Genomics 16, 873–879 (2006).

CAS  PubMed  Google Scholar 

Pasanen, M. K., Fredrikson, H., Neuvonen, P. J. & Niemi, M. Adapted furnishings of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 82, 726–733 (2007).

CAS  PubMed  Google Scholar 

Lee, E. et al. Rosuvastatin pharmacokinetics and pharmacogenetics in white and Asian capacity residing in the aforementioned environment. Clin. Pharmacol. Ther. 78, 330–341 (2005).

CAS  PubMed  Google Scholar 

Niemi, M. et al. Polymorphic amoebic anion alteration polypeptide 1B1 is a above account of repaglinide pharmacokinetics. Clin. Pharmacol. Ther. 77, 468–478 (2005).

CAS  PubMed  Google Scholar 

Katz, D. A. et al. Amoebic anion alteration polypeptide 1B1 action classified by SLCO1B1 genotype influences atrasentan pharmacokinetics. Clin. Pharmacol. Ther. 79, 186–196 (2006).

CAS  PubMed  Google Scholar 

Xiang, X. et al. Pharmacogenetics of SLCO1B1 gene and the appulse of *1b and *15 haplotypes on irinotecan disposition in Asian blight patients. Pharmacogenet. Genomics 16, 683–691 (2006).

CAS  PubMed  Google Scholar 

Oswald, S., Scheuch, E., Cascorbi, I. & Siegmund, W. A LC-MS/MS adjustment to quantify the atypical cholesterol blurred biologic ezetimibe in animal serum, urine and carrion in advantageous capacity genotyped for SLCO1B1. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 830, 143–150 (2006).

CAS  PubMed  Google Scholar 

Link, E. et al. SLCO1B1 variants and statin-induced myopathy — a genomewide study. N. Engl. J. Med. 359, 789–799 (2008). This arrangement represents the aboriginal genome-wide affiliation abstraction in the pharmacogenomics of, and highlights the important role of, biologic transporters in biologic safety.

CAS  PubMed  PubMed Central  Google Scholar 

Uchida, Y., Kamiie, J., Ohtsuki, S. & Terasaki, T. Multichannel aqueous chromatography-tandem accumulation spectrometry cocktail adjustment for absolute substrate assuming of multidrug resistance-associated protein 4 transporter. Pharm. Res. 24, 2281–2296 (2007).

CAS  PubMed  Google Scholar 

Ishikawa, T. et al. Accelerated screening of animal ATP-binding cassette agent action and abiogenetic polymorphisms: new strategies in pharmacogenomics. Methods Enzymol. 400, 485–510 (2005).

CAS  PubMed  Google Scholar 

Keppler, D., Jedlitschky, G. & Leier, I. Carriage action and substrate specificity of multidrug attrition protein. Methods Enzymol. 292, 607–616 (1998).

CAS  PubMed  Google Scholar 

Hilgendorf, C. et al. Announcement of thirty-six biologic agent genes in animal intestine, liver, kidney, and organotypic corpuscle lines. Biologic Metab. Dispos. 35, 1333–1340 (2007).

CAS  PubMed  Google Scholar 

Sauvant, C. et al. Action of EGF and PGE2 on basolateral amoebic anion uptake in aerial adjacent renal tubules and hOAT1 bidding in animal branch epithelial cells. Am. J. Physiol. Renal Physiol. 286, F774–F783 (2004).

CAS  PubMed  Google Scholar 

Lee, S. H. & Sinko, P. J. siRNA — accepting the bulletin out. Eur. J. Pharm. Sci. 27, 401–410 (2006).

CAS  PubMed  Google Scholar 

Yue, W., Abe, K. & Brouwer, K. L. Knocking bottomward breast blight attrition protein (Bcrp) by adenoviral vector-mediated RNA arrest (RNAi) in sandwich-cultured rat hepatocytes: a atypical apparatus to appraise the addition of Bcrp to biologic biliary excretion. Mol. Pharm. 6, 134–143 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Zhang, W. et al. Silencing the breast blight attrition protein announcement and action in caco-2 beef appliance lentiviral vector-based abbreviate ambit RNA. Biologic Metab. Dispos. 37, 737–744 (2009).

CAS  PubMed  Google Scholar 

Keppler, D. Uptake and address transporters for conjugates in animal hepatocytes. Methods Enzymol. 400, 531–542 (2005).

CAS  PubMed  Google Scholar 

Sasaki, M. et al. Anticipation of in vivo biliary approval from the in vitro transcellular carriage of amoebic anions beyond a double-transfected Madin-Darby basset branch II monolayer cogent both rat amoebic anion alteration polypeptide 4 and multidrug attrition associated protein 2. Mol. Pharmacol. 66, 450–459 (2004).

CAS  PubMed  Google Scholar 

Sasaki, M., Suzuki, H., Ito, K., Abe, T. & Sugiyama, Y. Transcellular carriage of amoebic anions beyond a double-transfected Madin-Darby basset branch II corpuscle monolayer cogent both animal amoebic anion-transporting polypeptide (OATP2/SLC21A6) and multidrug resistance-associated protein 2 (MRP2/ABCC2). J. Biol. Chem. 277, 6497–6503 (2002).

CAS  PubMed  Google Scholar 

Cui, Y., Konig, J. & Keppler, D. Vectorial carriage by double-transfected beef cogent the animal uptake agent SLC21A8 and the aciculate consign pump ABCC2. Mol. Pharmacol. 60, 934–943 (2001).

CAS  PubMed  Google Scholar 

Bartholome, K. et al. Data-based algebraic clay of vectorial carriage beyond double-transfected polarized cells. Biologic Metab. Dispos. 35, 1476–1481 (2007).

CAS  PubMed  Google Scholar 

Marion, T. L., Leslie, E. M. & Brouwer, K. L. Use of sandwich-cultured hepatocytes to appraise broken acerbity acerbic carriage as a apparatus of drug-induced hepatotoxicity. Mol. Pharm. 4, 911–918 (2007).

CAS  PubMed  Google Scholar 

Liu, X. et al. Biliary abolishment in primary rat hepatocytes able in a collagen-sandwich configuration. Am. J. Physiol. 277, G12–G21 (1999).

CAS  PubMed  Google Scholar 

LeCluyse, E. L., Audus, K. L. & Hochman, J. H. Formation of all-encompassing canalicular networks by rat hepatocytes able in collagen-sandwich configuration. Am. J. Physiol. 266, C1764–C1774 (1994).

CAS  PubMed  Google Scholar 

Hoffmaster, K. A. et al. P-glycoprotein expression, localization, and action in sandwich-cultured primary rat and animal hepatocytes: appliance to the hepatobiliary disposition of a archetypal opioid peptide. Pharm. Res. 21, 1294–1302 (2004).

CAS  PubMed  Google Scholar 

Abe, K., Bridges, A. S. & Brouwer, K. L. Use of sandwich-cultured animal hepatocytes to adumbrate biliary approval of angiotensin II receptor blockers and HMG-CoA reductase inhibitors. Biologic Metab. Dispos. 37, 447–452 (2009).

CAS  PubMed  Google Scholar 

Klaassen, C. D. & Lu, H. Xenobiotic transporters: ascribing action from gene knockout and alteration studies. Toxicol. Sci. 101, 186–196 (2008).

CAS  PubMed  Google Scholar 

Schinkel, A. H. et al. Disruption of the abrasion Mdr1a P-glycoprotein gene leads to a absence in the blood–brain barrier and to added acuteness to drugs. Corpuscle 77, 491–502 (1994). This arrangement was the aboriginal abstraction that approved the important role of P-gp in the blood–brain barrier in the abrasion and its role in free biologic sensitivity.

CAS  PubMed  Google Scholar 

Polli, J. W. et al. An abrupt agitator role of P-glycoprotein and breast blight attrition protein on the axial afraid arrangement assimilation of the tyrosine kinase inhibitor lapatinib (N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethy l]amino}methyl)-2-furyl]-4-quinazolinamine; GW572016). Biologic Metab. Dispos. 37, 439–442 (2009).

CAS  PubMed  Google Scholar 

Zamek-Gliszczynski, M. J., Kalvass, J. C., Pollack, G. M. & Brouwer, K. L. Accord amid drug/metabolite acknowledgment and crime of excretory carriage function. Biologic Metab. Dispos. 37, 386–390 (2009).

CAS  PubMed  Google Scholar 

Li, M. et al. Identification of interspecies aberration in address transporters of hepatocytes from dog, rat, monkey and human. Eur. J. Pharm. Sci. 35, 114–126 (2008).

CAS  PubMed  Google Scholar 

Takekuma, Y. et al. Aberration amid pharmacokinetics of mycophenolic acerbic (MPA) in rats and that in bodies is acquired by adapted affinities of MRP2 to a glucuronized form. J. Pharm. Pharm. Sci. 10, 71–85 (2007).

CAS  PubMed  Google Scholar 

Zamek-Gliszczynski, M. J. et al. Cogwheel captivation of Mrp2 (Abcc2) and Bcrp (Abcg2) in biliary abolishment of 4-methylumbelliferyl glucuronide and sulfate in the rat. J. Pharmacol. Exp. Ther. 319, 459–467 (2006).

CAS  PubMed  Google Scholar 

Zamek-Gliszczynski, M. J. et al. The important role of Bcrp (Abcg2) in the biliary abolishment of sulfate and glucuronide metabolites of acetaminophen, 4-methylumbelliferone, and harmol in mice. Mol. Pharmacol. 70, 2127–2133 (2006).

CAS  PubMed  Google Scholar 

Merino, G., van Herwaarden, A. E., Wagenaar, E., Jonker, J. W. & Schinkel, A. H. Sex-dependent announcement and action of the ATP-binding cassette agent breast blight attrition protein (BCRP/ABCG2) in liver. Mol. Pharmacol. 67, 1765–1771 (2005).

CAS  PubMed  Google Scholar 

Vlaming, M. L. et al. Carcinogen and anticancer biologic carriage by Mrp2 in vivo: studies appliance Mrp2 (Abcc2) knockout mice. J. Pharmacol. Exp. Ther. 318, 319–327 (2006).

CAS  PubMed  Google Scholar 

Chu, X. Y. et al. Assuming of mice defective the multidrug attrition protein MRP2 (ABCC2). J. Pharmacol. Exp. Ther. 317, 579–589 (2006).

CAS  PubMed  Google Scholar 

van de Steeg, E. et al. Methotrexate pharmacokinetics in transgenic mice with liver-specific announcement of animal amoebic anion-transporting polypeptide 1B1 (SLCO1B1). Biologic Metab. Dispos. 37, 277–281 (2009).

CAS  PubMed  Google Scholar 

Hirano, M., Maeda, K., Shitara, Y. & Sugiyama, Y. Drug–drug alternation amid pitavastatin and assorted drugs via OATP1B1. Biologic Metab. Dispos. 34, 1229–1236 (2006).

CAS  PubMed  Google Scholar 

Maeda, K. & Sugiyama, Y. in Biologic Transporters (eds You, G. & Morris, M. E.) 557–588 (John Wiley & Sons, Hoboken, New York, 2007).

Google Scholar 

Hirano, M., Maeda, K., Shitara, Y. & Sugiyama, Y. Addition of OATP2 (OATP1B1) and OATP8 (OATP1B3) to the hepatic uptake of pitavastatin in humans. J. Pharmacol. Exp. Ther. 311, 139–146 (2004).

CAS  PubMed  Google Scholar 

Watanabe, T., Kusuhara, H., Maeda, K., Shitara, Y. & Sugiyama, Y. Physiologically based pharmacokinetic clay to adumbrate transporter-mediated approval and administration of pravastatin in humans. J. Pharmacol. Exp. Ther. 328, 652–662 (2009).

CAS  PubMed  Google Scholar 

Paine, S. W., Parker, A. J., Gardiner, P., Webborn, P. J. & Riley, R. J. Anticipation of the pharmacokinetics of atorvastatin, cerivastatin, and indomethacin appliance active models activated to abandoned rat hepatocytes. Biologic Metab. Dispos. 36, 1365–1374 (2008).

CAS  PubMed  Google Scholar 

Poirier, A., Funk, C., Scherrmann, J. M. & Lave, T. Mechanistic clay of hepatic carriage from beef to accomplished body: appliance to napsagatran and fexofenadine. Mol. Pharm. 6, 1716–1733 (2009).

CAS  PubMed  Google Scholar 

Takano, A. et al. Appraisal of in vivo P-glycoprotein action at the blood–brain barrier amid MDR1 gene polymorphisms by appliance 11C-verapamil. J. Nucl. Med. 47, 1427–1433 (2006).

CAS  PubMed  Google Scholar 

Guhlmann, A. et al. Noninvasive appraisal of hepatobiliary and renal abolishment of cysteinyl leukotrienes by positron discharge tomography. Hepatology 21, 1568–1575 (1995).

CAS  PubMed  Google Scholar 

de Vries, E. F. et al. Can celecoxib affect P-glycoprotein-mediated biologic efflux? A microPET study. Nucl. Med. Biol. 35, 459–466 (2008).

CAS  PubMed  Google Scholar 

Piwnica-Worms, D. et al. Anatomic imaging of multidrug-resistant P-glycoprotein with an organotechnetium complex. Blight Res. 53, 977–984 (1993).

CAS  PubMed  Google Scholar 

Hendrikse, N. H. et al. In vivo imaging of hepatobiliary carriage action advised by multidrug attrition associated protein and P-glycoprotein. Blight Chemother. Pharmacol. 54, 131–138 (2004).

CAS  PubMed  Google Scholar 

Cebecauerova, D. et al. Dual ancestral jaundice: accompanying accident of mutations causing Gilbert’s and Dubin–Johnson syndrome. Gastroenterology 129, 315–320 (2005).

CAS  PubMed  Google Scholar 

Bujanover, Y., Bar-Meir, S., Hayman, I. & Baron, J. 99mTc-HIDA cholescintigraphy in accouchement with Dubin–Johnson syndrome. J. Pediatr. Gastroenterol. Nutr. 2, 311–312 (1983).

CAS  PubMed  Google Scholar 

Ghibellini, G., Leslie, E. M., Pollack, G. M. & Brouwer, K. L. Use of Tc-99m mebrofenin as a analytic delving to appraise adapted hepatobiliary transport: affiliation of in vitro, pharmacokinetic modeling, and simulation studies. Pharm. Res. 25, 1851–1860 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Ghibellini, G. et al. In vitro–in vivo alternation of hepatobiliary biologic approval in humans. Clin. Pharmacol. Ther. 81, 406–413 (2007).

CAS  PubMed  Google Scholar 

Ghibellini, G., Johnson, B. M., Kowalsky, R. J., Heizer, W. D. & Brouwer, K. L. A atypical adjustment for the assurance of biliary approval in humans. AAPS J. 6, e33 (2004).

PubMed  Google Scholar 

Michael, M. et al. Accord of hepatic anatomic imaging to irinotecan pharmacokinetics and abiogenetic ambit of biologic elimination. J. Clin. Oncol. 24, 4228–4235 (2006).

CAS  PubMed  Google Scholar 

Wong, M. et al. Predictors of vinorelbine pharmacokinetics and pharmacodynamics in patients with cancer. J. Clin. Oncol. 24, 2448–2455 (2006).

CAS  PubMed  Google Scholar 

Zhang, Y. & Benet, L. Z. The gut as a barrier to biologic absorption: accumulated role of cytochrome P450 3A and P-glycoprotein. Clin. Pharmacokinet. 40, 159–168 (2001).

CAS  PubMed  Google Scholar 

Wacher, V. J., Wu, C. Y. & Benet, L. Z. Overlapping substrate specificities and tissue administration of cytochrome P450 3A and P-glycoprotein: implications for biologic commitment and action in blight chemotherapy. Mol. Carcinog. 13, 129–134 (1995).

CAS  PubMed  Google Scholar 

Benet, L. Z. & Cummins, C. L. The biologic efflux–metabolism alliance: biochemical aspects. Adv. Biologic Deliv. Rev. 50 (Suppl. 1), S3–S11 (2001).

CAS  PubMed  Google Scholar 

Wacher, V. J., Salphati, L. & Benet, L. Z. Active beard and enterocytic biologic metabolism barriers to biologic absorption. Adv. Biologic Deliv. Rev. 46, 89–102 (2001).

CAS  PubMed  Google Scholar 

Lown, K. S. et al. Role of abdominal P-glycoprotein (mdr1) in interpatient aberration in the articulate bioavailability of cyclosporine. Clin. Pharmacol. Ther. 62, 248–260 (1997).

CAS  PubMed  Google Scholar 

Gomez, D. Y., Wacher, V. J., Tomlanovich, S. J., Hebert, M. F. & Benet, L. Z. The furnishings of ketoconazole on the abdominal metabolism and bioavailability of cyclosporine. Clin. Pharmacol. Ther. 58, 15–19 (1995).

CAS  PubMed  Google Scholar 

Shitara, Y., Horie, T. & Sugiyama, Y. Transporters as a account of biologic approval and tissue distribution. Eur. J. Pharm. Sci. 27, 425–446 (2006).

CAS  PubMed  Google Scholar 

Kusuhara, H. & Sugiyama, Y. In vitro–in vivo extrapolation of transporter-mediated approval in the alarmist and kidney. Biologic Metab. Pharmacokinet. 24, 37–52 (2009).

CAS  PubMed  Google Scholar 

Amidon, G. L., Lennernas, H., Shah, V. P. & Crison, J. R. A abstract base for a biopharmaceutic biologic classification: the alternation of in vitro biologic artefact dissolution and in vivo bioavailability. Pharm. Res. 12, 413–420 (1995).

CAS  PubMed  Google Scholar 

Wu, C. Y. & Benet, L. Z. Predicting biologic disposition via appliance of BCS: transport/absorption/ abolishment coaction and development of a biopharmaceutics biologic disposition allocation system. Pharm. Res. 22, 11–23 (2005).

CAS  PubMed  Google Scholar 

US Department of Bloom and Animal Services Food, Food and Biologic Administration & Center for Biologic Appraisal and Research (CDER). Advice for Industry. Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Articulate Dosage Forms Based on a Biopharmaceutics Allocation System. US FDA website [online], (2000).

Watanabe, T. et al. Anticipation of the hepatic and renal approval of agent substrates in rats appliance in vitro uptake experiments. Biologic Metab. Dispos. 37, 1471–1479 (2009).

CAS  PubMed  Google Scholar 

Shugarts, S. & Benet, L. Z. The role of transporters in the pharmacokinetics of orally administered drugs. Pharm. Res. 26, 2039–2054 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Chang, C., Ekins, S., Bahadduri, P. & Swaan, P. W. Pharmacophore-based analysis of ligands for biologic transporters. Adv. Biologic Deliv. Rev. 58, 1431–1450 (2006).

CAS  PubMed  PubMed Central  Google Scholar 

Gombar, V. K., Polli, J. W., Humphreys, J. E., Wring, S. A. & Serabjit-Singh, C. S. Predicting P-glycoprotein substrates by a quantitative structure–activity accord model. J. Pharm. Sci. 93, 957–968 (2004).

CAS  PubMed  Google Scholar 

Ha, S. N., Hochman, J. & Sheridan, R. P. Mini assay on atomic clay of P-glycoprotein (Pgp). Curr. Top. Med. Chem. 7, 1525–1529 (2007).

CAS  PubMed  Google Scholar 

Ekins, S. et al. In vitro and pharmacophore-based analysis of atypical hPEPT1 inhibitors. Pharm. Res. 22, 512–517 (2005).

CAS  PubMed  Google Scholar 

Ekins, S., Ecker, G. F., Chiba, P. & Swaan, P. W. Future admonition for biologic agent modelling. Xenobiotica 37, 1152–1170 (2007).

CAS  PubMed  Google Scholar 

US Food and Biologic Administration. Highlights of Prescribing Advice Tykerb (Lapatinib). US FDA website [online], (2007).

US Food and Biologic Administration. Biologic Development and Biologic Interactions. US FDA website [online], (2009).

Tucker, G. T., Houston, J. B. & Huang, S. M. EUFEPS appointment report. Optimising biologic development: strategies to appraise biologic metabolism/transporter alternation abeyant — appear a consensus. European Federation of Pharmaceutical Sciences. Eur. J. Pharm. Sci. 13, 417–428 (2001).

CAS  PubMed  Google Scholar 

Buckman, S., Huang, S. M. & Murphy, S. Medical artefact development and authoritative science for the 21st century: the analytical aisle eyes and its appulse on bloom care. Clin. Pharmacol. Ther. 81, 141–144 (2007).

CAS  PubMed  Google Scholar 

US Department of Bloom and Animal Services, Food and Biologic Administration, Center for Biologic Appraisal and Research (CDER), Center for Biologics Appraisal and Research (CBER). Advice for Industry. Exposure–Response Relationships — Abstraction Design, Abstracts Assay and Authoritative Applications. US FDA website [online], (2003).

Huang, S. M. & Temple, R. Is this the biologic or dosage for you? Appulse and application of indigenous factors in all-around biologic development, authoritative review, and analytic practice. Clin. Pharmacol. Ther. 84, 287–294 (2008).

PubMed  Google Scholar 

Fenner, K. S. et al. Drug–drug interactions advised through P-glycoprotein: analytic appliance and in vitro–in vivo alternation appliance digoxin as a delving drug. Clin. Pharmacol. Ther. 85, 173–181 (2009).

CAS  PubMed  Google Scholar 

Urquhart, B. L. et al. Breast blight attrition protein (ABCG2) and biologic disposition: abdominal expression, polymorphisms and sulfasalazine as an in vivo probe. Pharmacogenet. Genomics 18, 439–448 (2008).

CAS  PubMed  PubMed Central  Google Scholar 

Kitamura, S., Maeda, K., Wang, Y. & Sugiyama, Y. Captivation of assorted transporters in the hepatobiliary carriage of rosuvastatin. Biologic Metab. Dispos. 36, 2014–2023 (2008).

CAS  PubMed  Google Scholar 

Zhang, Y. et al. BCRP transports dipyridamole and is inhibited by calcium approach blockers. Pharm. Res. 22, 2023–2034 (2005).

CAS  PubMed  Google Scholar 

Ito, K. et al. Anticipation of pharmacokinetic alterations acquired by drug–drug interactions: metabolic alternation in the liver. Pharmacol. Rev. 50, 387–412 (1998).

CAS  PubMed  Google Scholar 

Kanamitsu, S., Ito, K. & Sugiyama, Y. Quantitative anticipation of in vivo drug–drug interactions from in vitro abstracts based on physiological pharmacokinetics: use of best absolved absorption of inhibitor at the basin to the liver. Pharm. Res. 17, 336–343 (2000). This arrangement provides methodologies for the quantitative anticipation of in vivo DDIs from in vitro studies of drug–transporter interactions.

CAS  PubMed  Google Scholar 

Mikkaichi, T. et al. Isolation and assuming of a digoxin agent and its rat homologue bidding in the kidney. Proc. Natl Acad. Sci. USA 101, 3569–3574 (2004).

CAS  PubMed  Google Scholar 

Nozaki, Y. et al. Breed aberration in the inhibitory aftereffect of nonsteroidal anti-inflammatory drugs on the uptake of methotrexate by animal branch slices. J. Pharmacol. Exp. Ther. 322, 1162–1170 (2007).

CAS  PubMed  Google Scholar 

Maeda, A. et al. Appraisal of the alternation amid nonsteroidal anti-inflammatory drugs and methotrexate appliance animal amoebic anion agent 3-transfected cells. Eur. J. Pharmacol. 596, 166–172 (2008).

CAS  PubMed  Google Scholar 

Letschert, K., Keppler, D. & Konig, J. Mutations in the SLCO1B3 gene affecting the substrate specificity of the hepatocellular uptake agent OATP1B3 (OATP8). Pharmacogenetics 14, 441–452 (2004).

CAS  PubMed  Google Scholar 

Sanna, S. et al. Accepted variants in the SLCO1B3 locus are associated with bilirubin levels and unconjugated hyperbilirubinemia. Hum. Mol. Genet. 18, 2711–2718 (2009).

CAS  PubMed  PubMed Central  Google Scholar 

Treiber, A., Schneiter, R., Hausler, S. & Stieger, B. Bosentan is a substrate of animal OATP1B1 and OATP1B3: inhibition of hepatic uptake as the accepted apparatus of its interactions with cyclosporin A, rifampicin, and sildenafil. Biologic Metab. Dispos. 35, 1400–1407 (2007).

CAS  PubMed  Google Scholar 

Matsushima, S., Maeda, K., Ishiguro, N., Igarashi, T. & Sugiyama, Y. Investigation of the inhibitory furnishings of assorted drugs on the hepatic uptake of fexofenadine in humans. Biologic Metab. Dispos. 36, 663–669 (2008).

CAS  PubMed  Google Scholar 

Busti, A. J. et al. Furnishings of atazanavir/ritonavir or fosamprenavir/ritonavir on the pharmacokinetics of rosuvastatin. J. Cardiovasc. Pharmacol. 51, 605–610 (2008).

CAS  PubMed  Google Scholar 

Obach, R. S. et al. The account of in vitro cytochrome P450 inhibition abstracts in the anticipation of drug–drug interactions. J. Pharmacol. Exp. Ther. 316, 336–348 (2006).

CAS  PubMed  Google Scholar 

Wire, M. B., Shelton, M. J. & Studenberg, S. Fosamprenavir: analytic pharmacokinetics and biologic interactions of the amprenavir prodrug. Clin. Pharmacokinet. 45, 137–168 (2006).

CAS  PubMed  Google Scholar 

Hedman, M., Neuvonen, P. J., Neuvonen, M., Holmberg, C. & Antikainen, M. Pharmacokinetics and pharmacodynamics of pravastatin in pediatric and boyish cardiac displace recipients on a dieting of amateur immunosuppression. Clin. Pharmacol. Ther. 75, 101–109 (2004).

CAS  PubMed  Google Scholar 

Simonson, S. G. et al. Rosuvastatin pharmacokinetics in affection displace recipients administered an antirejection dieting including cyclosporine. Clin. Pharmacol. Ther. 76, 167–177 (2004).

CAS  PubMed  Google Scholar 

US Food and Biologic Administration. Highlights of Prescribing Advice Livalo (Pitavastatin). US FDA website [online], (2009).

Zheng, H. X., Huang, Y., Frassetto, L. A. & Benet, L. Z. Elucidating rifampin’s inducing and inhibiting furnishings on glyburide pharmacokinetics and claret glucose in advantageous volunteers: apprehension the cogwheel furnishings of agitator consecration and agent inhibition for a biologic and its primary metabolite. Clin. Pharmacol. Ther. 85, 78–85 (2009).

CAS  PubMed  Google Scholar 

US Food and Biologic Administration. Highlights of Prescribing Information: Tracleer (Bosentan). US FDA website [online], (2001).

Kiser, J. J. et al. Drug/Drug alternation amid lopinavir/ritonavir and rosuvastatin in advantageous volunteers. J. Acquir. Immune Defic. Syndr. 47, 570–578 (2008).

CAS  PubMed  Google Scholar 

Li, M., Anderson, G. D. & Wang, J. Drug–drug interactions involving film transporters in the animal kidney. Expert Opin. Biologic Metab. Toxicol. 2, 505–532 (2006).

CAS  PubMed  Google Scholar 

Cundy, K. C. Analytic pharmacokinetics of the antiviral nucleotide analogues cidofovir and adefovir. Clin. Pharmacokinet. 36, 127–143 (1999). This commodity provides an accomplished overview of analytic DDIs in the kidney.

CAS  PubMed  Google Scholar 

Laskin, O. L. et al. Furnishings of probenecid on the pharmacokinetics and abolishment of acyclovir in humans. Antimicrob. Agents Chemother. 21, 804–807 (1982).

CAS  PubMed  PubMed Central  Google Scholar 

Somogyi, A., Stockley, C., Keal, J., Rolan, P. & Bochner, F. Reduction of metformin renal tubular beard by cimetidine in man. Br. J. Clin. Pharmacol. 23, 545–551 (1987).

CAS  PubMed  PubMed Central  Google Scholar 

Somogyi, A. & Muirhead, M. Pharmacokinetic interactions of cimetidine 1987. Clin. Pharmacokinet. 12, 321–366 (1987).

CAS  PubMed  Google Scholar 

Somogyi, A. A., Bochner, F. & Sallustio, B. C. Stereoselective inhibition of pindolol renal approval by cimetidine in humans. Clin. Pharmacol. Ther. 51, 379–387 (1992).

CAS  PubMed  Google Scholar 

Feng, B. et al. Aftereffect of animal renal cationic agent inhibition on the pharmacokinetics of varenicline, a new analysis for smoker cessation: an in vitro–in vivo study. Clin. Pharmacol. Ther. 83, 567–576 (2008).

CAS  PubMed  Google Scholar 

Shiga, T., Hashiguchi, M., Urae, A., Kasanuki, H. & Rikihisa, T. Aftereffect of cimetidine and probenecid on pilsicainide renal approval in humans. Clin. Pharmacol. Ther. 67, 222–228 (2000).

CAS  PubMed  Google Scholar 

Tsuruoka, S. et al. Severe arrhythmia as a aftereffect of the alternation of cetirizine and pilsicainide in a accommodating with renal insufficiency: aboriginal case presentation assuming antagonism for abolishment via renal multidrug attrition protein 1 and amoebic cation agent 2. Clin. Pharmacol. Ther. 79, 389–396 (2006).

CAS  PubMed  Google Scholar 

Abel, S., Nichols, D. J., Brearley, C. J. & Eve, M. D. Aftereffect of cimetidine and ranitidine on pharmacokinetics and pharmacodynamics of a distinct dosage of dofetilide. Br. J. Clin. Pharmacol. 49, 64–71 (2000).

CAS  PubMed  PubMed Central  Google Scholar 

Rameis, H. Quinidine–digoxin interaction: are the pharmacokinetics of both drugs altered? Int. J. Clin. Pharmacol. Ther. Toxicol. 23, 145–153 (1985).

CAS  PubMed  Google Scholar 

Hager, W. D. et al. Digoxin–quinidine alternation pharmacokinetic evaluation. N. Engl. J. Med. 300, 1238–1241 (1979).

CAS  PubMed  Google Scholar 

Ding, R. et al. Substantial pharmacokinetic alternation amid digoxin and ritonavir in advantageous volunteers. Clin. Pharmacol. Ther. 76, 73–84 (2004).

CAS  PubMed  Google Scholar 

US Food and Biologic Administration. NDA 21–913 Dronedarone HCl. US FDA website [online], (2006).

Jerling, M. Analytic pharmacokinetics of ranolazine. Clin. Pharmacokinet. 45, 469–491 (2006).

CAS  PubMed  Google Scholar 

Kruijtzer, C. M. et al. Added articulate bioavailability of topotecan in aggregate with the breast blight attrition protein and P-glycoprotein inhibitor GF120918. J. Clin. Oncol. 20, 2943–2950 (2002).

CAS  PubMed  Google Scholar 

Alternatively, you can e mail your saved bill template to your clients with out ever having to download it. Thanks for this excellent puzzle feed template. I managed to comply with all of the steps to have the images rearranged on the Preview App. However, will I submit each particular person picture from the Preview App onto the Instagram Feed….

Then you would possibly be fully free to add almost any type of videos you want. As nicely as any custom video that’s saved by yourself laptop. You can simply customize any of our pre-designed theme. We present you each option to beautify your web site. The only factor left to do is to publish and promote your awesome new infographic. Then, all you have to do is present the content material to make use of inside them.

When you’re glad together with your brand, select the perfect bundle for your needs. Create, customise and print professionally designed enterprise templates for a wide range of industries including training, healthcare, hospitality and so much extra. With Adobe Spark flyers, you’ll find a way to higher promote your trigger with easily shareable content that is sure to encourage.

Please read the full tutorial first to make sure you perceive exactly the means to use the template and how to cut up your pictures completely. It appears difficult to create, but it’s truly super simple. Sore, our software create extremely search engine optimized website.

We’ve made certain that signing as a lot as our resume maker tools is even more convenient than usual. Use one of the most common networks utilized by professionals or just skip this step and enter your name and e mail tackle. Professionally-designed resume templates and examples (+guides). Save time with our simple 3-step resume builder.

Built-in formulas, pivot tables and conditional formatting choices save time and simplify common spreadsheet tasks. Obviously, that is probably the most time-consuming half — but it’s additionally essentially the most fun. Simply come up with a catchy title, plug in your data/content, and regulate your font sizes and formatting. Feel free to change up the graphics and colours, too, in order that they’re related to your model and the information you are providing. To customise the look of the infographic much more, you would possibly add or change up the colours or font styles. Start from any banner template and create amazing advertisements that truly convert.

Blank Family Tree Template 1 Generations

However, you can’t add new logos or icons to your project. The customer help team is prepared to answer any questions rapidly you might have. Feel free to shoot us an email or open a ticket via customer service to get all of the answers to your questions.

Yes, we provide an intensive library of free resume examples, overlaying all industries and 90+ job titles. Our consultants, overseen by our resident CPRW Mark Slack, meticulously wrote every resume pattern to show what a perfect resume in every business ought to cover. Whether you aren’t certain what to include in your resume, or you just need some inspiration to get started, we extremely encourage you to read a sample from your industry. Our online software program generates resume templates with hundreds of perfectly written work expertise bullet factors for you to choose from, covering all industries. Just point and click to immediately place the work duties you performed onto your resume in bullet point format.

Revisit your flyer project if you need to resize it, replace it, or repurpose your design for future campaigns. Make your flyer on-brand by uploading your brand, using your brand’s shade palette, and handpicking fonts that match your aesthetic. With a premium plan, you presumably can even auto-apply your branded elements to keep away from wasting time and create extra. Make it yoursAdd your personal photographs or pick from a library of design elements, change the colour scheme and customise the typography.

0 Response to "Blank Family Tree Template 1 Generations"

Posting Komentar